
Althea
A peer-to-peer routing and machine billing protocol

Althea L1
A micropayment-specialized blockchain network

Whitepaper v2.1 Apr 2024

Justin Kilpatrick, Jehan Tremback, Deborah Simpier, Christian Borst

{justin, jehan, deborah, christian}@althea.net

Abstract
In the seven years since the original Althea whitepaper was published, the Althea networking
and billing protocol has been developed and iterated, and it is now used to provide commercial
home internet around the world. This updated paper seeks to place the present state of the
Althea network protocol in context with new developments. Specifically, Althea L1 as a
blockchain platform specifically tuned, but not exclusively for, micropayments generated by
routers running the Althea networking and billing protocol.

Althea Protocol Overview

As of January 2024, 5.3 billion people (or 66% of the world) use a device connected to the
internet. The ways in which bandwidth is sold, purchased, and consumed have far-reaching
implications, making it a topic of significant interest.

The Althea routing and billing protocol (“the Althea Protocol”) allows anyone to install
equipment, participate in the decentralized ISP, and receive payment for their service.

This transforms bandwidth from a good that can only be sold in exclusive contracts into a
commodity that anyone can purchase dynamically from anyone else. Further, the Althea
Protocol is cheaper to use because:

● Nodes dynamically switch between connectivity providers to find a route with the best
combination of bandwidth and low cost.

● Overhead costs, like advertising and marketing, are reduced as the only advertisements
in this system are the automatic advertisements of price and route quality between
nodes. The open-access nature of this system makes it easy for new entrants to
participate efficiently.

● Contract and billing costs are eliminated by dynamically routed micropayment, which
enables devices to automatically pay each other efficiently.

In this paper, we will unveil the technology that made this achievement possible.

Althea L1 Overview

Althea L1 is a micropayment specialized blockchain network designed to meet the requirements
of the Althea Protocol operating at scale. Specifically, it is intended for:

● Fast finality – As soon as a transaction is accepted into the blockchain, it cannot be
reverted.

● Low costs to settle payments – Payments on the order of a few cents must be
practical.

● Micropayment priority – Payments must be accepted in a predictable manner at all
times.

● Efficient light client verification – It must be possible to verify payments quickly with
low overhead on embedded devices.

● Integrated EVM – Arbitrary computation offers valuable flexibility in designing
supplemental contracts and tokens, allowing for applications that support the
micro-payment settlement platform while maintaining its core function.

This unique blend of properties allows the Althea Protocol to achieve scalability, reliability, and
longevity—crucial elements for any successful internet service platform.

Abstract
Althea Protocol Overview
Althea L1 Overview
the Althea Protocol

Overview
Network Overview
Routing Overview
Payments Overview

Payments for operators
Routing

Route metric verification

The full path round trip time extension
Correcting route fraud through metric adjustment

Metering
Network

Exit nodes
Althea L1

Validating and staking
Governance
Transaction throughput
Single slot finality
Light clients
MicroTx Module
EVM

Liquid Infrastructure
Exit database smart contract
Native DEX

Appendix
Micropayments versus Payment Channels
References

the Althea Protocol

Overview
Althea allows routers to meter and pay each other for bandwidth using blockchain
micropayments. An important architectural detail is that nodes only pay neighbors for forwarding
packets. This allows us to phrase the route price as a routing metric in a distance vector routing
protocol such as BGP or Babel (Chapin & Kunzinger, 2006) (Chrobozek & Schinazi, 2021).

On top of this pay-for-forward network, we build a system where consumers can pay for internet
access. The Althea Protocol is intended for use in local “mesh” networks (Frangoudis et al.,
2011).

Network Overview
To simplify the explanation of Althea's network architecture, we present several 'roles' that
devices may perform. Note that these are logical roles, not physical ones. So, a single device
may perform several or even all of these roles simultaneously:

● User nodes are installed by individuals seeking internet access through Althea. These
nodes function similarly to traditional ISP-provided routers/modems but with a critical

difference: they operate independently of any single ISP. User nodes connect everyday
devices to the Althea network, handle payments, and provide standard networking
services like WiFi and LAN connections.

● Intermediary nodes are installed by connectivity providers seeking to earn income by
forwarding internet traffic. These will often be more powerful and placed strategically with
good line of sight to other nodes. Notably, most nodes function as both intermediary and
user nodes since the same software allows for buying/selling bandwidth and relaying
traffic. A well-placed home router can carry substantial traffic and generate revenue.

● Gateway nodes are specialized intermediary nodes that directly connect the Althea
network to the wider internet via low-cost sources like internet exchanges or
business-grade connections from a conventional ISP. They bridge Althea's physical
network to the outside world, while exit nodes operate the link to the wider internet.

● Exit nodes, potentially hosted in data centers reachable over the internet, are
connected to gateway nodes via VPN tunnels. They serve two essential purposes: first,
measuring network quality to enable optimal gateway node selection, and second,
handling the legal responsibilities of an ISP (like address translation and copyright
matters). This frees gateway nodes to focus solely on bandwidth provision without
monitoring user traffic.

Read more about the network architecture in the Network section.

Routing Overview
In the Routing section, we define a couple of extensions to the Babel routing protocol. Babel
was selected because it has several valuable properties we can use. However, any distance
vector routing protocol could be modified to exhibit the properties Althea requires. Distance
vector protocols are already used extensively on the internet, with BGP being one of the most
well-known ones.

Routing in distance vector protocols is based on an advertised connection quality metric. Nodes
send an announcement packet stating their identity and existence to the network once every
predetermined period. These announcement packets are then passed from node to node. Each
node updates the metric to reflect the connection quality between it and the neighbor where it
got the announcement. Using this information, each node can build up a routing table of the
best neighbors to forward packets to reach any network destination in O(n) time on each node.

We have also added a verifiable quality metric and a price metric to the existing distance vector
routing.

A verifiable quality metric is a connection quality metric that can be verified by a node and the
destination where it is sending packets. Our first extension to Babel allows nodes to verify the
metrics advertised by their neighbors.

To advertise prices, a second metric is added to the routing advertisements, this time containing
a ‘price’ value for some arbitrary but agreed-upon amount of data transfer. When passing
advertisements, each node updates the price field with its fee for passing data. Routes are then
selected by optimizing the quality metric vs. the price metric and paying the selected total sum
required to route all the way to the destination.

These two extended metrics have the net effect of ‘unbundling’ the traditional metric field in
Babel, a simple unsigned sixteen-bit integer each router adds to based on their own
determinations of packet loss and optionally latency. This enables independent decision-making
across the network, transparent pricing, and objective quality validation.

Payments Overview
Each node on the network establishes an internal account for each of its neighbors. Bandwidth
is then tracked as described in the Metering section and used by each node to independently
compute what it is owed and what it owes each neighbor.

A network-wide threshold is set at which payment is expected. For example each node would
expect to be paid after a specific monetary value of bandwidth was used. Example values could
include 1c or 50c, but all network nodes must agree on this value.

If a payment is expected but not delivered at any given time, the unpaid node will throttle or
entirely cut off connectivity.

Micropayments create a low-risk environment for both buyers and sellers. For buyers, the risk is
minimal: they might prepay a neighbor node for bandwidth that becomes unavailable. Likewise,
sellers might provide bandwidth to a node unable to pay, potentially missing out on other
customers. However, the small payment amounts keep potential losses insignificant for both
sides.

Despite using micropayments, trust is still a factor. We have chosen a 'pay after' model to
minimize risk. In a 'pay before' system,’ malicious nodes could repeatedly profit by taking
payment without providing service. With 'pay after,’ however, those refusing payment gain
nothing but a bad connection, making exploitation pointless.

Each node also pays an exit node to forward traffic from the internet to them. This is how
‘download’ traffic is paid for in a pay-for-forward network. Read more about exit nodes in the
Network section.

For the purposes of the Althea Protocol, any unit of account can be used for payments.
Potentially, multiple currencies could even be used within the same network simultaneously.
Nevertheless, in general, stablecoins will be used and agreed upon as the payment currency by
a network running the Althea Protocol.

Payments for operators
In traditional ISPs, network management (like handling support calls, performing new user
installations, and troubleshooting issues) is typically bundled together with the use of bandwidth
and hardware access.

While network management is not technically part of the Althea Protocol, it is a problem we
must consider to make a distributed ISP possible and practical for everyone.

The base Althea Protocol software can be extended with third-party management tools, allowing
for the same maintenance and troubleshooting possible in a traditional ISP.

“Network operators” are businesses that support the Althea Protocol nodes on behalf of the
end-users and are compensated based on an agreement between the customer and the
operator.

While most telecom companies charge a flat monthly fee, regardless of actual usage, Althea’s
system is different. Users pay hourly based on the network operators they choose. This hourly
billing ensures that users only pay for what they use while encouraging network operators to
keep them connected. Plus, it works seamlessly with Althea's system for micropayments, so
users never experience significant, unexpected charges.

Althea's protocol gives users the power to easily switch between network operators. This
creates a competitive market where providers are incentivized to provide excellent service,
keeping networks reliable and prices fair.

Routing
Routing in Althea is based on the Babel routing protocol (Chrobozek & Schinazi, 2021), a
proven distance vector protocol known for its robustness and performance. Babel employs a
distributed version of the Bellman-Ford pathfinding algorithm, where nodes first evaluate link
quality to their neighbors (link cost). They then share reachability information, including quality
metrics, starting with their immediate neighbors.

When a node learns about a destination, it calculates a 'route metric' – a composite score
factoring in the quality advertised by its neighbor and its own link cost to that neighbor. This
metric indicates the overall quality of reaching the destination via multiple hops. The neighbor
offering the best metric becomes the next hop on the route, and Babel updates the Linux
kernel's routing table to direct traffic accordingly.

From the Babel specification:
As with many routing algorithms, Babel computes the costs of links between any two
neighboring nodes, abstract values attached to the edges between two nodes. [..]

Given a route between any two nodes, the metric of the route is the sum of the costs of
all the edges along the route. The goal of the routing algorithm is to compute, for every

source S, the tree of the routes of the lowest metric to S.

In the Babel protocol specification, all link quality measurements are folded into a single metric
field. This includes packet loss, round trip time, and manual adjustment factors provided by that
node. Aggregating all these different values into a single metric used to make decisions is a key
part of why distance vector protocols are efficient.

While a single metric value simplifies route selection, it is impossible for the destination to
disaggregate it. When selecting a route, a node cannot know if packet loss or latency
contributed to a poor metric. Further, the metric alone does not reveal the bandwidth pricing
across the entire path, making optimizing routes based on cost and quality harder.

As discussed in the Routing Overview, our two Babel extensions add verifiable quality and price
metrics. These values are stored and transmitted separately from the main ‘metric’ field in
protocol messages and are used in route verification and billing.

While the extended Babel protocol now tracks three metrics, routing decisions must be made
using only one. Based on user preferences, the metric field is adjusted based on the price and
route quality values from the other two metrics. The resulting final metric is used for route
decisions and advertising to neighbors.

This solution allows the Althea Protocol to leverage the high efficiency of distance vector
protocols while transmitting more decision-making information to each node. Note that a given
node cannot select the entire route through the network that traffic will take, only the next hop.

Each node sees the price and latency of a given route and weighs these values individually in
its own metric decision. However, that decision impacts other nodes that may have made
different decisions given the same information based on their preferences.

Routing algorithms that allow the sender to specify the full path exist, called ‘source routing
protocols’. However, the overhead of these routing protocols is dramatically higher. Consider a
case where a minor link between two nodes has changed in quality. In a source-routed network,
every node must be notified of this change. In a distance vector routed network this change
would not trigger any additional overhead since the route was not the optimal one to any
destination.

Empirical studies have shown that a Babel network of 4000 nodes produces ~1.8mbps in
overhead traffic. Given modern hardware and network link speeds, this is a more than
sustainable number and does not account for many potential optimizations.

Route metric verification
Distance vector routing protocols have vulnerabilities (Teli et al., 2022). Although the Althea
Protocol does not introduce entirely new attack vectors, it does change the potential incentives,
requiring careful consideration.

Participation in a network running the Althea Protocol should be as permissionless as possible,
meaning anyone can join and participate without first having to register or otherwise make
themselves known to a centralized party.

This means that an attacker may join at any time and advertise themselves as a false route to a
destination. Naive nodes will then pass their traffic to the attacker, who will collect payment for
providing poor-quality service.

In the Network section, we describe an end-to-end encryption system using exit nodes. Our
primary concern is financially motivated attacks where the attacker modifies the routing metrics
to attract undeserved traffic.

The full path round trip time extension
We have implemented a ‘full path round trip time’ extension for Babeld. This is built upon the
existing ‘delay-based metric extension’ that tracks latency between individual nodes (Jonglez &
Chroboczek, 2024).

Round trip time (RTT) as a metric can be summed along the route or computed purely by the
source and destination. This makes RTT a ‘verifiable metric’ that can be used to identify where
and when an attacker has lied about the actual quality of a route.

The full path RTT extension calculates the total estimated latency for a route by summing the
individual RTTs between neighboring nodes. This information is then included in route
advertisements, allowing each node to assess the expected delay to any destination in its local
routing table.

Each node has an encrypted connection with an exit node that is used to send traffic from the
Althea Protocol network to the larger internet and back. Using this encrypted connection, the
client and exit can directly communicate with each other and determine the link’s actual RTT,
which can then be compared to the advertised value.

This is sufficient to detect route fraud, and we will describe a simple algorithm to use to do so:

𝑅𝑇𝑇
𝑒𝑥𝑖𝑡

 = 𝑅𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑡𝑖𝑚𝑒 𝑎𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑒𝑥𝑖𝑡

𝑅𝑇𝑇
𝑟𝑜𝑢𝑡𝑒

= 𝑅𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑡𝑖𝑚𝑒 𝑎𝑠 𝑎𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒

𝑇 = 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑣𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑
𝐶 = 𝐴 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑅𝑇𝑇

𝑒𝑥𝑖𝑡
 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑜𝑟𝑠𝑒 𝑡ℎ𝑎𝑛 𝑅𝑇𝑇

𝑟𝑜𝑢𝑡𝑒

𝐼𝑓 𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅𝑇𝑇
𝑒𝑥𝑖𝑡

) * 𝐶 < 𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅𝑇𝑇
𝑅𝑂𝑈𝑇𝐸

) 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 𝑇 𝑎 𝑟𝑜𝑢𝑡𝑒 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

At the time of publishing, only the detection has been implemented and deployed. In the
following sections, we present an algorithm that can correct route fraud if implemented
network-wide by extending this single route validation scheme.

Correcting route fraud through metric adjustment
In order to correct route fraud completely, each node must occasionally perform RTT verification
with other random nodes in its routing table. This method is identical to the single-node
validation procedure used to detect fraud between a client and an exit node.

𝐸𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑜𝑢𝑡𝑒 𝑎𝑛𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑟𝑜𝑢𝑡𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛.
𝐼𝑓 𝑎 𝑟𝑜𝑢𝑡𝑒 𝑓𝑎𝑖𝑙𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅𝑇𝑇

𝑎𝑐𝑡𝑢𝑎𝑙
) − 𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅𝑇𝑇

𝑟𝑜𝑢𝑡𝑒
)

The correction factor can then be applied to the route as advertised by the node performing the
validation. For example, a route is advertised as 10 milliseconds in latency and is determined
actually to be 30 milliseconds. In that case, the node will advertise that route as having 30
milliseconds of latency, regardless of the incorrect input.

When applied across an entire network, fraudulent routing will be corrected for and removed
over time by eventually isolating corrections to the neighbors of the fraudulent node.

The problem of route fraud is not entirely solvable. The solution presented above could see its
effectiveness reduced by half simply by advertising fraudulent routes only half the time. In each
round, the attacker would advertise incorrect routes until detected, then stop long enough for
new checks to be run and the correction to be removed.

Like the problem of spam email, detecting and mitigating route fraud is an ongoing process that
will encourage the development of private algorithms resistant to reverse engineering by
attackers.

Despite not being entirely solvable, the problem can be reduced to a simple nuisance with the
basic measures described above.

Metering
We have a system for nodes to pay for traffic, but enforcement is crucial. There needs to be
some control over which neighbors receive internet access. Anyone could spoof a MAC address
and gain unauthorized access, so we need a cryptographic authentication that works for both
wired and wireless links.

For now, the best approach is using encrypted and authenticated tunneling software like
Wireguard (Donenfeld, 2024). A minor optimization would include authentication information in
an IPv6 header extension instead of encapsulating in tunnel packets with Wireguard. However,
Wireguard is already optimized, and its simplicity makes it the preferred choice for
authentication between neighbors and client-to-exit traffic.

Each node negotiates and creates a neighbor tunnel with each of its neighbors. This provides
security against spoofing, even in situations like an open wireless network or a shared L2.

In order to correctly compute how much each node owes or is owed by its neighbor, we must do
more than simply track traffic on each tunnel. We must also know the destination since each
destination has different costs.

The metering algorithm can be described as follows:

.𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑡𝑎𝑏𝑙𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑖𝑟𝑒𝑤𝑎𝑙𝑙 𝑟𝑢𝑙𝑒
𝐸𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑎𝑛 𝑎𝑡𝑜𝑚𝑖𝑐 𝑔𝑒𝑡 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑛𝑑 𝑟𝑒𝑠𝑒𝑡 𝑒𝑎𝑐ℎ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑡𝑜
𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑟𝑜𝑢𝑡𝑒 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠
𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑤𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

Nodes must track incoming and outgoing traffic for each destination. This allows them to
calculate what they owe to neighbors and what neighbors owe them.

A critical insight is how packet loss affects this system. For example, node A looks at its tx
counter to determine how much to pay, and node B looks at its rx counter to determine how
much it expects to be paid. Packet loss means that tx >= rx; therefore, B may see more
payment than expected.

Since nodes do not react negatively to being slightly overpaid, packet loss does not break the
network-wide consensus about how much nodes owe each other.

This is another key property of pay-for-forward, as nodes running the Althea Protocol cannot
prove to the outside world how much they owe or are owed. However, they can observe the
traffic they have forwarded and authenticated with absolute certainty and independently verify
how much they should pay or be paid.

Nodes do not need to communicate with each other about how much should be paid; they
simply send payments. Applied recursively, this allows for correct computation of billing data
across large and complex networks, essentially applying the Bellman-Ford algorithm to an
accounting problem and leveraging its distributed efficiency to practically compute billing data.

Network
The base primitive that Althea is built on is a pay-for-forward network. If all the mechanisms in
the preceding sections work correctly, we have a network where nodes can pay each other on a
granular level for their service (like forwarding data and verifying that the forwarding is
happening correctly). This section describes how Althea provides one of the most popular
network services: internet access.

For a network to provide internet access, there must be at least one node, the gateway node,
with a connection to the internet (hopefully, there will be many). A gateway node connects to an
exit node over a tunnel, which creates a virtual interface that Babel is run on, treating it like any
other link.

The gateway node/exit node topology is used by WLAN Slovenija, PeoplesOpen.net, and other
community mesh networks (SudoRoom, 2024).

Exit nodes can also be directly connected to a network running the Althea Protocol. However,
the gateway node abstraction is useful and frequently used to aggregate traffic or reduce
logistics burdens around managing access to the wider internet.

Babel routes to destinations over tunnel connections just as well as over real connections. This
means that the nodes do not have to do any explicit gateway selection. Gateway nodes set a
price and receive payment for routes to the exit node, just like any other route. User nodes are
connected to chosen exit nodes over encrypted tunnels and receive internet access over these
tunnels. The only thing that gateway and intermediary nodes see is encrypted traffic between
user nodes and exit nodes.

Exit nodes
Exit nodes act as a bridge between Althea’s open, trustless network and the wider internet.
They handle the functions ISPs typically manage, except for physical packet transmission. This
allows the other nodes to focus only on connectivity, while exit nodes provide customer
interface, business, and legal aspects. Althea's model creates a streamlined ecosystem: those
skilled in network infrastructure focus on building it, while exit nodes take care of the rest.

Further, exit nodes:

● Deal with public IP addresses – Exit nodes have public IP addresses for user nodes to
connect to the internet. They manage NAT functionality for IPv4 traffic and can assign an
IPv6 subnet as needed. Distributing an exit into smaller nodes has been the preferred
strategy, compared to implementing CGNAT or other methods to use more than one
IPv4 address per exit node. Nevertheless, there are no technical limitations that prevent
an exit node from implementing CGNAT and serving thousands of users out of a single
powerful server.

● Provide encrypted tunnels – All user traffic is encrypted and tunneled to the exit node.
This protects privacy and ensures that only the exit node can view unencrypted data.

● Verify routes – Our extensions to Babel allow nodes to verify routes between
themselves and a destination. Exit nodes are the destination for a user node’s outbound
traffic, and the user nodes are destinations for the return traffic. User and exit nodes
work together to keep the nodes on the Althea network between them accurate. User
nodes are implicitly trusting exit nodes to perform route verification accurately.

● Deal with legal considerations – Exit nodes act as intermediaries for any legal
responsibilities related to internet connectivity. Exit nodes gather data from their users on
signup and send the users traffic to the outside world. This protects other nodes, like
gateway and intermediary nodes, to only see encrypted packets and allows them to
focus on providing connectivity.

● Pay for return traffic – User nodes pay their neighbors to forward traffic to the exit node
they are using and onto the internet, but someone needs to pay for the traffic coming
back. User nodes give exit nodes some money, which the exit nodes use to pay their
neighbors for the return traffic.

Althea L1
The Althea L1 combines many lessons learned from blockchain design over the last decade
with the specific needs of the Althea Networking and billing protocol (‘the Althea Protocol’).

Althea L1 is built on CosmosSDK using the CometBFT consensus protocol (Informal Systems,
2024). This is not the highest-performance blockchain design regarding transaction throughput,
but CosmosSDK provides the best mix of properties for the Althea Protocol.

Validating and staking
Validators stake tokens in order to produce blocks for the Althea L1 blockchain. Althea L1 uses
a Delegated Proof of Stake (DPoS) model, meaning that users can delegate their tokens to any
given validator and receive rewards minus some amount of commission set by the validator.

Validators and anyone who delegates tokens to them risk losing some of their stake if the
validator misbehaves, called slashing. Misbehavior includes failing to participate in block
validation or trying to sign multiple versions of the same block.

The rewards for validators and delegators come from inflation and fees. Newly minted ALTHEA
tokens are produced at a rate decided by chain governance and transaction fees. Transaction
fees are split between the validator who built the block and all validators pro-rata their stake
based on the block proposer reward parameter, which is also set by governance.

While it is possible for an unlimited number of validators to join the validator set, only the top N
validators will be active, where N is a number selected by governance concerning the tradeoff
between faster finality (smaller validator set) and more chain robustness (larger validator set).

Governance
Althea L1 empowers community members to shape the blockchain directly. Anyone can submit
a governance proposal at any time by depositing ALTHEA. These proposals have the power to:

● Adjust key parameters: Change things like inflation rates or validator limits.
● Schedule updates: Coordinate upgrades (hardforks) to the blockchain.
● Even change the rules: Modify how much ALTHEA is needed for future proposals.

Only staked or delegated tokens can be used to vote on governance proposals, and a proposal
must reach a configurable quorum (usually 1/3 of all staked tokens). Once a quorum is reached,
the proposal will pass or fail based on the pro-rata votes of staked tokens.

Each delegator may vote on a proposal based on the weight of their staked tokens. If a
delegator does not vote, the validator they are delegating to votes for them. This helps ensure
that a reasonable quorum can be met for every proposal.

This functionality provides a decentralized way to make community decisions and change chain
parameters by providing transparency to what would otherwise be soft social consensus.

Transaction throughput
Depending on the payment threshold described in Payments Overview, we can estimate
roughly how many transactions per hour a home router running the Althea Protocol might need.

𝐷𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑠𝑝𝑒𝑒𝑑 = 1𝑔𝑏𝑖𝑡
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑝𝑟𝑖𝑐𝑒 = 7𝑐 / 𝐺𝐵
𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30𝑐
𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 34 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

The average American household uses around 600GB of monthly data (Layton, 2023). At this
speed, that amount of bandwidth would be consumed in 1 hour and 20 minutes. Assuming 100
million households are using bandwidth simultaneously at that same speed, we would require a
transaction throughput of 2.9 million transactions per second.

The fastest modern blockchains can support a few tens of thousands of transactions per
second. This example was selected to demonstrate why transaction throughput is not a key
property for Althea L1. Instead, we work on optimizing the number of transactions.

In the above example, two nodes running the Althea Protocol exchange $31 worth of bandwidth
an hour. This is an intentionally extreme case. Nevertheless, negotiating a payment threshold
higher than 30c is a simple optimization. When routing over a well-known neighbor, the payment
threshold, and thus the trust threshold, can be increased without significant risk to the user.

Further, nodes that need to maintain this throughput for long periods and cannot increase the
payment threshold can use a payment channel. See the Appendix Micropayments versus
Payment Channels. By using a payment channel, unlimited transactions can occur off-chain and
only require two transactions on-chain.

Because of the pay-for-forward nature of the Althea Protocol, it is easy to reduce the frequency
at which transactions must be committed to the chain. Since each node owes only its neighbor
and the exit node for forwarding traffic, it is simple to roll up how much is owed into a single
transaction between the two parties.

If nodes target a payment frequency of once every 6 hours and we apply that to our 100 million
node example, the required number of transactions becomes an achievable 4,500 transactions
per second.

We have now presented two strategies for reducing the number of transactions required by the
Althea Protocol:

- Set a target number of transactions per unit of time and adjust the payment threshold to
match, or

- Use payment channels to maintain low payment thresholds without creating additional
transaction load.

By applying these two strategies simultaneously, it is straightforward to fit a given amount of the
Althea Protocol users within an available amount of transaction capacity provided by Althea L1.

Lastly, using Cosmos’ Interchain Security (ICS), it is possible for multiple instances of Althea L1
to operate in parallel, sharing the same validator set (Interchain Foundation, 2024).

Single slot finality
Single slot finality refers to a blockchain consensus mechanism in which all blocks are final as
soon as they are produced (Ethereum Foundation, 2024). A block being ‘final’ means that it
cannot be reverted during the normal operation of the chain for any reason.

Ethereum’s Proof of Stake (PoS) currently does not have single slot finality. Instead, it takes
about 15 minutes for transactions to become final under normal circumstances. During that
time, a transaction may be reverted for rare operational reasons.

Any potential delay in finality of a transaction is a severe problem for the Althea Protocol.
Bandwidth is being exchanged in real-time, so the Althea Protocol would either have to handle
potential transaction reversions or be forced to wait ~15 minutes between payments to allow
them to settle.

As discussed in the Transaction throughput section, the ability to adjust payment frequency is a
vital part of allowing the Althea Protocol nodes to manage risk. Any delay in finality limits how
those options can be used and impose additional complexities on the payment management
code required to handle potential reversions properly.

Many users of delayed finality blockchains are accustomed to transactions settling quickly and
rarely being reversed. However, for the Althea Protocol to operate at scale, even infrequent
reversions could have significant economic consequences. Therefore, the Althea Protocol
demands true single slot finality for reliable, scalable operation.

This focus on finality necessitates a smaller validator set, likely under a thousand active nodes.
To ensure broader participation, DPOS still enables unlimited stakeholders to delegate their
tokens to these active validators, influencing consensus without needing to run nodes
themselves.

Light clients
A ‘light client’ is a piece of software that lets you interact with a blockchain without downloading
and verifying its full history. This makes it faster and less resource-intensive to use the network.

Light clients can only answer queries about data finalized by the blockchain. If a block has been
reverted, a light client could be presented with two valid versions of the same block with no way
to distinguish between them. Only by having all the available consensus data is it possible to
know which of two versions of the same block is more likely to be valid, at which point the client
is no longer ‘light.’

To participate effectively in Althea, users need quick access to accurate blockchain data. Light
clients make this possible, even as the network scales. This is true even though it is possible
and easier to reduce the number of transactions sent on-chain. To allow the Althea Protocol to
operate at scale, sources of information about the state of Althea L1 must be low cost to operate
and high-capacity.

Using Merkle proofs, it is possible to prove any piece of Althea L1 state with only a few
megabytes of overhead and a few hundred kilobytes per data proved (Interchain Foundation,
2024). A simplified algorithm is described below.

𝐴 𝑙𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑠𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑖𝑛 𝑎𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡𝑟𝑢𝑠𝑡
𝑇ℎ𝑒 𝑙𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑏𝑙𝑜𝑐𝑘 ℎ𝑒𝑎𝑑𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑑𝑒. 𝑇ℎ𝑖𝑠 𝑛𝑜𝑑𝑒 𝑐𝑜𝑢𝑙𝑑 𝑎𝑙𝑠𝑜 𝑏𝑒 𝑎 𝑙𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑒𝑛𝑡
𝑇ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 ℎ𝑒𝑎𝑑𝑒𝑟𝑠 𝑠ℎ𝑜𝑤 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 𝑠𝑒𝑡 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑏𝑙𝑜𝑐𝑘, 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑎𝑛𝑦 𝑛𝑒𝑤 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟𝑠
𝐵𝑙𝑜𝑐𝑘 ℎ𝑒𝑎𝑑𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎 33% 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑜𝑡𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑐𝑎𝑛 𝑏𝑒 𝑜𝑚𝑖𝑡𝑡𝑒𝑑, 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑝𝑟𝑜𝑜𝑓 𝑠𝑖𝑧
𝑂𝑛𝑐𝑒 𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑐ℎ𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖𝑡 𝑐𝑎𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎 𝑀𝑒𝑟𝑘𝑙𝑒 𝑝𝑟𝑜𝑜𝑓 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑟 𝑜
𝑇ℎ𝑒 𝑀𝑒𝑟𝑘𝑙𝑒 𝑝𝑟𝑜𝑜𝑓 𝑖𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 𝑠𝑒𝑡, 𝑝𝑟𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒

Compact Merkle proofs empower even low-power devices like point-of-sale terminals to verify
Althea L1 state directly. Without this possibility of low overhead light clients, vast server farms of
trusted RPC nodes would be forever required to service device requests, creating a significant
barrier to growth.

Light client capabilities reduce the cost of interacting with Althea L1 for everyone. Even with an
extremely powerful server, verifying the entire history of a chain like Ethereum takes days. With
light clients, initializing a new Althea L1 node and catching up to the present state can be done
in minutes.

Using light client proofs, it is possible to create a ‘hybrid node’ that stores only parts of the state
and queries other nodes for any pieces it does not have. By distributing the state across many
nodes, each with only partial information, data is made more available, and resource
requirements are reduced. It would even be possible for hybrid nodes to act as validators.

Let us use the Cosmos Hub as an example. With 3.7 million accounts, its current state is 14GB
(Polkachu, 2014). Extrapolating 100 million accounts would mean around 400GB. This is
manageable, and since storage technology typically outpaces blockchain growth, the need for
hybrid nodes may be unlikely in the near future.

MicroTx Module
In order to segment and prioritize the Althea Protocol bandwidth payments and other
microtransactions from other traffic, a specific module and transaction type have been made.

As discussed in Single slot finality and Transaction throughput, the Althea Protocol requires a
significant amount of transaction throughput, and these transactions must be delivered reliably.

By separating the Althea Protocol transactions from other on-chain traffic, Althea L1 can
optimize throughput and reliability for this MicroTx transaction type.

For example, if Althea L1 is struggling with transaction demand, the protocol can raise the
minimum size of a MicroTx transaction. This increase effectively obligates the Althea Protocol
clients to increase their payment threshold. In exchange for this increase, Althea L1 avoids
becoming overloaded and continues to include the Althea Protocol transactions in a timely
manner.

Likewise, if there is an excess of EVM transaction throughput that risks overloading Althea L1,
the EVM gas fees can be increased separately. This ensures that MicroTx transactions can
continue to be included without raising the payment threshold.

MicroTx transactions pay a percentage fee in exchange for being exempt from the minimum fee
requirements of other transaction types and given priority on inclusion.

While EVM fees can only be paid in ALTHEA tokens, MicroTx fees can be paid in any
compatible stablecoin as defined by chain governance.

MicroTx fees are distributed to the validator, including the transaction, and to all validators in a
ratio determined by the `base_proposer_reward` governance parameter. This incentivizes
validators to include as many MicroTx as possible in each block, which might be detrimental to
other types of transactions that do not require highly predictable inclusion.

EVM
Althea L1 has an integrated Ethereum Virtual Machine (EVM). The EVM is the most popular and
evolved blockchain programming platform by a large margin (Nico, 2024). The goal of including
the EVM in Althea L1 is to provide permissionless programmable functionality to help expand
the functionality of the Althea Protocol and other similar protocols that may operate on Althea
L1.

The primary challenge of the Althea L1 EVM is limiting its use so that it does not provide an
undue burden on the validators operating the blockchain. This challenge has manifested in
many blockchain architectures, including Ethereum, as the demand for on-chain storage and
computation is often highly unpredictable and regularly causes fee spikes, delays, and other
disruptions to user transactions.

Due to the design of the EVM, all smart contracts and on-chain storage become part of the
chain state forever, with rare exceptions. Unlike chain history, which can be discarded, there is
no way to discard parts of EVM state without raising many difficult tradeoffs.

As previously discussed in Light clients, while state growth can be managed, extremely rapid
state growth could be fatal to the operation of the chain by making it impractical to run an Althea
L1 node.

We are using Ethermint, a CosmosSDK embeddable EVM. By default Ethermint does not
implement the fee burning component of EIP-1559. We have modified Ethermint to implement
Ethereum’s design of the transaction fee market described in EIP-1559 by having it burn fees
(Buterin et al., 2019).

The EIP-1159 design has been augmented so that the Althea Protocol does not remit the priority
fee to validators.

The two major outcomes of EIP-1559 implemented in the Althea EVM can be described as
follows:

- Fees for EVM transactions are burned, not delivered, to validators and
- A specific gas target is set to encourage predictable state growth.

If gas use exceeds the target, fees increase exponentially until demand returns to the target
level. Likewise, fees decrease if use goes below the gas target.

Althea's EVM burns fees to prevent validators from prioritizing their own profit over the network's
primary function. As fees rose, miners accepted private payments to include specific
transactions, and they could even game the system by "paying" themselves.

This undermined Ethereum's core economics. Any attempt to adjust gas prices would not
reduce blockspace demand since privately negotiated deals bypassed the fee system entirely.
This threatened Ethereum's long-term operation.

To prevent these fee markets from disrupting the essential functions of the Althea L1, fee
burning will ensure fees must be paid as specified. It is not anticipated, or intended, that the
amount of ALTHEA burned by this change will be significant to the overall supply compared to
typical inflation rates for DPoS chains.

There is such demand for programmable blockspace because it is extremely useful. However,
the demands of the EVM applications must refrain from interfering with the Althea Protocol's
predictable and reliable function and its overall ability to handle increased demand without
disrupting users.

In the next section, we demonstrate two valuable applications using the Althea L1 EVM.

Liquid Infrastructure
Liquid infrastructure is a form of account abstraction closely integrated with the MicroTx module
and links the MicroTx module to the EVM.

A unique problem with the Althea Protocol nodes is that they must make as many
micropayments as data is forwarded and, therefore, have some operating balance in each node.
Since the private key is active and online in each router, it is possible for a thief to compromise
or even physically steal a router (and thus earnings) from bandwidth sales.

Maintaining the secrecy of the private keys associated with Althea nodes or routers can also be
challenging for end users and network operators. Network operators must have scripts
containing dozens of keys to practically aggregate their earnings from the nodes they operate.
These scripts are challenging to secure, making selling or transferring ownership of the Althea
Protocol nodes difficult. Since the new owner or operator must either laboriously re-image all the
Althea Protocol nodes or simply trust that the previous operator has deleted the private keys.

Liquid infrastructure allows any account on Althea L1 to send a ‘liquify’ transaction for their own
account. This transaction creates an ERC-721 compatible contract (an NFT) in the EVM
(Ethereum Foundation, 2023). This ‘Liquid Infrastructure NFT’ interacts with MicroTx module
payments specifically (Borst, 2024).

Using the `getThresholds` and `setThresholds` endpoints, the user can set a maximum account
balance of any specified token. Once this balance has been exceeded, the next MicroTx
sending those tokens into the liquified account will migrate excess funds into the EVM and lock
them in the Liquid Infrastructure NFT. The Liquid Infrastructure NFT owner can then withdraw
these proceeds at any time using the `withdrawBalances` endpoint.

An operator can store unlimited Liquid Infrastructure NFTs in a secure hardware wallet using the
same security infrastructure created for Ethereum. Likewise, operators can use the
permissionless nature of the Althea L1 EVM to deploy their own contracts to assist in arbitrary
management structures.

Using the Liquid Infrastructure NFTs to manage liquified Althea Protocol node accounts, it is
much simpler to collect node balances and sell or transfer the nodes by transferring control of
the relevant Liquid Infrastructure NFTs.

Exit database smart contract
In addition to the exit nodes architecture, the Exit Node smart contract hosted in the EVM allows
for more open management of exits (Hawk Networks INC, 2023).

Our earlier discussion of Exit nodes did not address the problem of key exchange between
clients and exits. A simple solution is using a database like Postgres, but this has drawbacks. It
requires embedding exit public keys into the Althea Protocol router firmware, adding significant
friction to creating a new exit. Many users lack the skill or desire to set up their own exit, forcing
them to rely on pre-configured options, limiting choice and decentralization.

Instead, a more practical implementation of the ‘Exit Registration Smart Contract’ contains a list
of registered users and a list of registered exits instead of a bespoke instance. In both cases
(registry or bespoke instance), a contract administrator validates that a user or exit meets any
required criteria before adding their public key information to the database. Devices using the
Althea Protocol can then optionally reference the exits list and roam between the provided set of
exits. Likewise, a network of exits can take advantage of the open nature of the database to
serve many users who would otherwise not select that exit operator directly.

Since blockchain data is public and readable by anyone, using these contracts to receive user
public key information can be plug-and-play, unlike exits using a centralized database like
Postgres, which must be individually authenticated with the database.

Due to the permissionless nature of the Althea L1 EVM, many exit databases can operate in
parallel. Both users and exit operators are free to choose one that best serves their needs.

Native DEX
Althea L1 features a native Decentralized Exchange (DEX) deployed on the EVM to facilitate
common token transfers happening on-chain, especially between stablecoins. The Native DEX
is a fork of Ambient (formerly CrocSwap) and combines concentrated and constant-product
liquidity market maker with many other convenient features.

The Althea L1 Native DEX has been configured to apply governance decisions from Cosmos
modules via the `nativedex` module. The `nativedex` module exposes common governance
operations as an extension to Cosmos governance, unifying the Althea L1 governance
experience across Cosmos and EVM features. Any ratified `nativedex` proposal triggers a
function call on the `CrocPolicy` contract, the Ambient governance contract.

`CrocPolicy` features role-based governance control measures with three roles: Treasury, Ops,
and Emergency. The Ops role has the lowest authority of all the roles and is restricted to
performing common functions to manage pools, like setting fees and configuring the available
pool types. The Emergency role can perform all the Ops role functions and enable Safe Mode to
disable the DEX in emergencies. The Treasury role can perform all functions and has been
connected to the nativedex module to grant Althea L1 governance control over the DEX. By

https://docs.ambient.finance/

depositing some ALTHEA anyone may propose a change to the native DEX through a
governance proposal. The Emergency and Ops roles can be set to multisig wallets by
governance and updated at any time through future proposals.

Appendix

Micropayments versus Payment Channels
In our original paper, we described the use of payment channels. A payment channel is a
method for two parties to exchange payments trustlessly by signing transactions that alter the
balance of an escrow account held by a bank or blockchain (Hearn, 2013).

While payment channels are a lower overhead way to make efficient micropayments between
two parties, they are a poor overall fit for the Althea Protocol.

Payment channels presented challenges in both the implementation and practical application of
the Althea Protocol. A device running the Althea Protocol may have an unlimited number of
‘neighbors’ over which it may route traffic. The task of routing is selecting which neighbors will
send traffic to the desired destination with the desired cost and quality. Therefore, when both the
cost of creating a payment channel and adding or removing funds is trivial, the cost of simply
sending a micropayment directly is similarly low, making payment channels an unnecessary
complication for practical implementations.

In the case where the cost of creating a payment channel and adding or removing funds is
non-trivial, the question of how to optimize what channels to create and how much to fund them
becomes central to any implementation of the Althea Protocol. Payment channels only become
practical in specific circumstances that do not currently exist in any bank or public blockchain
because it is either too costly to manage the channels or too cheap to send payments directly.

This does not mean that payment channels will never be practical, just that they must always be
part of a hybrid approach and used to optimize a system that allows for direct micropayments
between devices.

If both direct micropayments and channels are available, the optimization problem becomes
much more tractable. Devices running the Althea Protocol could negotiate a payment channel
only once sufficient payment activity between two parties already occurred to justify the creation
of the channel.

References

Borst, C. (2024, February 9). Liquid Infrastructure smart contracts. Github. Retrieved April 13,

2024, from https://github.com/althea-net/liquid-infrastructure-contracts

Buterin, V., Conner, E., Dudley, R., Slipper, M., Norden, I., & Bakhta, A. (2019, April 13).

EIP-1559: Fee market change for ETH 1.0 chain. Ethereum Improvement Proposals.

Retrieved April 12, 2024, from https://eips.ethereum.org/EIPS/eip-1559

Chapin, L., & Kunzinger, C. (2006, January). RFC 4271: A Border Gateway Protocol 4 (BGP-4).

RFC Editor. Retrieved April 11, 2024, from https://www.rfc-editor.org/rfc/rfc4271

Chrobozek, J., & Schinazi, D. (2021, January). RFC 8966: The Babel Routing Protocol. RFC

Editor. Retrieved April 11, 2024, from https://www.rfc-editor.org/rfc/rfc8966.html

Cloudflare. (2024, April 10).What is an Internet exchange point? | How do IXPs work?

Cloudflare. Retrieved April 10, 2024, from

https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/

Dô, C., Kolodziejak, W., & Chroboczek, J. (2021, January). MAC Authentication for the Babel

Routing Protocol. IEFT. Retrieved April 11, 2024, from

https://datatracker.ietf.org/doc/html/rfc8967

Donenfeld, J. A. (2024, April 12).Wireguard. WireGuard: fast, modern, secure VPN tunnel.

Retrieved April 12, 2024, from https://www.wireguard.com/

Ethereum Foundation. (2023, November 19). ERC-721 Non-Fungible Token Standard.

ethereum.org. Retrieved April 13, 2024, from

https://ethereum.org/en/developers/docs/standards/tokens/erc-721/

Ethereum Foundation. (2024, February 23). Single slot finality. ethereum.org. Retrieved April

13, 2024, from https://ethereum.org/en/roadmap/single-slot-finality/

FCC. (2021, December 31). Charts - Measuring Fixed Broadband - Eleventh Report. Federal

Communications Commission. Retrieved April 10, 2024, from

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fi

xed-broadband-eleventh-report

Frangoudis, P. A., Polyzos, G. C., & Kemerlis, V. P. (2011, May). Wireless Community Networks:

An Alternative Approach for Nomadic Broadband Network Access. IEEE

Communications Magazine.

Hawk Networks INC. (2023, November 28). althea-net/rita: Rita is a routing and billing protocol

that allows devices to buy and sell bandwidth. GitHub. Retrieved April 13, 2024, from

https://github.com/althea-net/rita

Hearn, M. (2013, June 27). [ANNOUNCE] Micro-payment channels implementation now in

bitcoinj. bitcointalk.org. Retrieved April 11, 2024, from

https://bitcointalk.org/index.php?topic=244656.0

Informal Systems. (2024, April 12). CometBFT. CometBFT. Retrieved April 12, 2024, from

https://cometbft.com/

Interchain Foundation. (2024, February 12). iavl/docs/proof/proof.md at master · cosmos/iavl.

GitHub. Retrieved April 13, 2024, from

https://github.com/cosmos/iavl/blob/master/docs/proof/proof.md

Interchain Foundation. (2024, April 12).What is IBC? Developer Portal. Retrieved April 12,

2024, from https://tutorials.cosmos.network/academy/3-ibc/1-what-is-ibc.html

Jonglez, B., & Chroboczek, J. (2024, January 15). Delay-based Metric Extension for the Babel

Routing Protocol. IETF Datatracker. Retrieved April 12, 2024, from

https://datatracker.ietf.org/doc/draft-ietf-babel-rtt-extension/

Kilpatrick, J. M. (2018, July 9). Babel full path latency and price propagation extension

specification. Github. Retrieved April 11, 2024, from

https://github.com/althea-net/babel-drafts

Layton, R. (2023, March 23). 2023 Report: Average Home Internet Data Usage Nears 600 GB.

Allconnect. Retrieved April 12, 2024, from

https://www.allconnect.com/blog/report-internet-use-over-half-terabyte

Nico. (2024, March 26). Ethereum Virtual Machine (EVM). ethereum.org. Retrieved April 12,

2024, from https://ethereum.org/en/developers/docs/evm

Petrosyan, A. (2024, January 31). Internet and social media users in the world 2024. Statista.

Retrieved April 10, 2024, from

https://www.statista.com/statistics/617136/digital-population-worldwide/

Polkachu. (2024, April 13). Stake with Polkachu on CosmosHub. Polkachu. Retrieved April 13,

2024, from https://polkachu.com/networks/cosmos

Roy, G. (2023, February 16). Ethereum Proof of Stake: Explained. Ledger. Retrieved April 12,

2024, from https://www.ledger.com/academy/ethereum-proof-of-stake-pos-explained

SudoRoom. (2024, April 12). SudoRoom. Retrieved April 12, 2024, from

https://sudoroom.org/wiki/Mesh/Network_topology

Teli, T. A., Yousuf, R., & Khan, D. A. (2022, February). MANET Routing Protocols, Attacks and

Mitigation Techniques: A Review. International Journal of Mechanical Engineering, 7(2).

https://kalaharijournals.com/resources/FebV7_I2_164.pdf

